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Abstract.
Background: In recent years, many convolutional neural networks (CNN) have been proposed for the classification of
Alzheimer’s disease. Due to memory constraints, many of the proposed CNNs work at a 2D slice-level or 3D patch-level.
Objective: Here, we propose a subject-level 3D CNN that can extract the neurodegenerative patterns of the whole brain MRI
and converted into a probabilistic Dementia score.
Methods: We propose an efficient and lightweight subject-level 3D CNN featuring dilated convolutions. We trained our
network on the ADNI data on stable Dementia of the Alzheimer’s type (sDAT) from stable normal controls (sNC). To
comprehensively evaluate the generalizability of our proposed network, we performed four independent tests which includes
testing on images from other ADNI individuals at various stages of the dementia, images acquired from other sites (AIBL),
images acquired using different protocols (OASIS), and longitudinal images acquired over a short period of time (MIRIAD).
Results: We achieved a 5-fold cross-validated balanced accuracy of 88% in differentiating sDAT from sNC, and an overall
specificity of 79.5% and sensitivity 79.7% on the entire set of 7,902 independent test images.
Conclusion: Independent testing is essential for estimating the generalization ability of the network to unseen data, but is
often lacking in studies using CNN for DAT classification. This makes it difficult to compare the performances achieved
using different architectures. Our comprehensive evaluation highlighting the competitive performance of our network and
potential promise for generalization.
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INTRODUCTION

Dementia of the Alzheimer’s type (DAT) begins
with an asymptomatic phase where pathophysiolog-
ical changes accumulate without clinical manifesta-
tion of cognitive symptoms. Over time, the disease
slowly progresses to a symptomatic phase where
cognitive impairment becomes evident and cognitive
function gradually declines. While there is currently
no cure for the disease, accurate diagnosis of DAT
is crucial for inclusion in clinical trials. Current neu-
roimaging strategies for diagnosing DAT include the
use of structural magnetic resonance imaging (MRI).
This is due to the fact that MRI studies have uncov-
ered DAT-related volumetric atrophy and cortical
thinning specifically in the medial temporal lobes,
entorhinal cortex, hippocampal and amygdala struc-
tures [1–5].

Numerous DAT detection frameworks using MRI
and machine learning have been developed. These
frameworks typically consist of a region-based fea-
ture extractor and a classifier. The feature extractor
takes an input image, performs segmentation, and
computes measurements of volume and cortical
thickness of pre-defined brain regions. The classifier
then uses the extracted volume and cortical thick-
ness features to decide whether a given MRI image
belongs to an individual with DAT. Such methods
have been successful in DAT detection, with many
studies reporting high accuracies [6–8].

More recently, convolutional neural networks
(CNN) have been proposed for the detection of DAT.
Contrary to the conventional framework, CNN can
learn feature representations and class discriminative
patterns directly from an image and simultaneously
acts as a feature extractor and a classifier. Thus, a
CNN approach can eliminate the need to perform
segmentation of region-of-interest (ROI). This is
desirable because segmentation is a challenging task
especially when structural atrophy is present. Earlier
CNN studies have focused on applying 2D CNNs
on 2D MRI slices by borrowing from existing CNN
architectures that have shown great success in natural
image classification task [9, 10]. However, 2D CNNs
cannot fully capture the spatial three-dimensional
information that is available in a 3D MRI. Later,
some studies focused on applying 3D CNNs on 3D
MRI patches [11–13]. But this approach shares the
same disadvantage as the 2D slice-level approach.
The main reason for using 3D MRI patches as inputs
is motivated by hardware limitation and memory con-
straints. Subject-level 3D CNN approach where a

whole brain MRI image is used as an input usually
presents higher computational costs in both memory
usage and training time.

Here, we propose a fast and lightweight 3D CNN
that can be applied on the whole brain 3D MRI image
to output a dementia probability score, which can
then be thresholded to achieve a classification. We
use a small number of layers with dilated convolu-
tions instead of a large stack of convolutional layers
to increase the receptive field more efficiently. This
allows the network to incorporate information from
a large neighborhood in a fast manner. We also use
convolutions without padding to reduce the size of
the learned spatial features, thereby reducing memory
usage.

Our network has a small number of layers and
learnable parameters, thus the training process can
be completed in a relatively shorter amount of time.
We trained our network on stable normal controls
(sNC) and stable DAT (sDAT) images obtained from
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. Importantly, we performed inde-
pendent testing of our network by using three publicly
available datasets [Australian Imaging Biomarkers
and Lifestyle flagship study of ageing (AIBL), Open
Access Series of Imaging Studies (OASIS), and Min-
imal Interval Resonance Imaging in Alzheimer’s
Disease (MIRIAD)]. We also evaluated our network
on images at various stages of the disease. These
extensive and independent tests set a benchmark
that can be useful for future comparisons with other
models. We show that our proposed novel 3D CNN
network can achieve high predictive performances
and we provide visualizations to show the validity
of the spatial patterns captured by our network.

MATERIALS AND METHODS

Data

The training data used in the preparation of this
article was obtained from the ADNI database (http://
adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by principal inves-
tigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure
the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease. Full details of subject
recruitment, scanning protocols and diagnostic cri-
teria are available on http://www.adni-info.org. The

http://adni.loni.usc.edu
http://www.adni-info.org
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data used for independent testing was collected by
the AIBL study group. AIBL study methodology has
been reported previously [14]. Data obtained from the
OASIS and MIRIAD were also used for independent
testing [15, 16].

Database stratification

To represent various stages along the DAT con-
tinuum, we stratified the images collected in a given
MRI study into seven subgroups: stable NC (sNC),
unstable NC (uNC), stable MCI (sMCI), progressive
MCI (pMCI), early DAT (eDAT), and stable DAT
(sDAT) [4, 17]. The first three subgroups (sNC, uNC,
sMCI) represent subjects without DAT-related patho-
physiological changes. These subjects do not have a
diagnosis of DAT during the study window. These
include subjects with normal and preserved cogni-
tive abilities (sNC), subjects with stable MCI (sMCI),
and subjects with declining cognitive abilities whose
diagnosis converted from NC to MCI during the
study window (uNC). The remaining four subgroups
(pNC, pMCI, eDAT, and sDAT) represent the DAT
spectrum that spans from clinically asymptomatic to
severely impaired. Considering that the clinical diag-
nosis of DAT is often achieved late in the disease
progression when cognitive abilities have become
significantly impaired, sDAT represents images of
individuals who joined the ADNI study after they
were clinically diagnosed with dementia. For MCI
subjects who later progress to dementia, their images
acquired before and after conversion are labeled as
pMCI and eDAT. Similarly, images of NC subjects
acquired before conversion to dementia and after con-
version are labeled as pNC and eDAT. Clearly, eDAT
signifies an early stage of dementia, and pNC and
pMCI signify an even earlier stage of dementia.

We used the baseline and longitudinal images
of the ADNI sNC and sDAT subjects to train and
evaluate our network via subject-level stratified 5-
fold cross-validation to deliver a probability of
Alzheimer’s dementia score. The remaining ADNI
uNC, sMCI, pNC, pMCI, and eDAT images were
utilized to assess whether our proposed network can
generalize to completely unseen images along the
DAT continuum. We also stratified the AIBL and
OASIS subjects into these seven subgroups to fur-
ther evaluate whether our network can generalize
to images displaying varying levels of atrophy and
images acquired using different hardware and imag-
ing protocols. Demographic details of all datasets are
presented in Table 1.

Table 1
Demographic details of ADNI, AIBL, OASIS, and MIRIAD

subjects

Dataset Sub- Number Number Sex Age
group of of (F/M)

subjects images

ADNI sNC 423 1868 197/226 76.25 ± 6.22
uNC 60 234 37/ 23 78.12 ± 4.89
sMCI 535 2195 315/220 74.58 ± 7.73
pNC 24 118 11/ 13 77.27 ± 4.23
pMCI 321 1028 188/133 75.43 ± 7.20
eDAT 293 750 171/122 76.69 ± 6.87
sDAT 330 975 182/148 75.69 ± 7.80

AIBL sNC 319 621 140/179 73.45 ± 6.69
uNC 15 26 8/ 7 72.73 ± 7.48
sMCI 70 100 37/ 33 75.97 ± 7.09
pNC 5 9 4/ 1 73.22 ± 4.97
pMCI 21 27 11/ 10 77.78 ± 6.57
eDAT 20 31 10/ 10 79.45 ± 6.30
sDAT 72 102 30/ 42 73.79 ± 8.17

OASIS sNC 550 1262 210/340 67.15 ± 9.25
uNC 180 367 91/ 89 74.39 ± 8.08
sMCI 56 62 26/ 30 74.78 ± 6.60
pNC 40 65 20/ 20 76.70 ± 7.42
pMCI 92 110 53/ 39 75.36 ± 7.15
eDAT 27 28 20/ 7 76.19 ± 8.54
sDAT 55 59 24/ 31 74.14 ± 9.21

MIRIAD sNC 23 243 12/11 69.86 ± 6.94
sDAT 46 465 19/27 69.56 ± 6.86

MRI image pre-processing

The pre-processing steps we employed are mainly
aimed at standardizing the pose of the MRI images.
The maximum voxel size of ADNI T1 MRI data in
any one direction is 1.5 mm [18], and the voxel size
for the OASIS data is 1.1 mm3 [19]. To ensure unbi-
ased validation result, we resliced the MRI images
into a common resolution of: 1.5 mm3 isotropic vox-
els and applied six degree-of-freedom (DOF) rigid
transformation to center and align the brain to the
three coordinate axes. In order to estimate the six
transformation parameters (three rotations and three
translations), we performed skull-stripping using the
Freesurfer software package (https://surfer.nmr.mgh.
harvard.edu). The skull-stripped images were then
registered to the MNI template using the FSL-FLIRT
software ([20]; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FLIRT). The skull-stripped images were only used
for estimating the six pose-transformation parame-
ters, and were not used for training. This is because
the skull-stripping step may occasionally over seg-
ment or under segment, resulting in portions of the
brain being removed or portions of the skull being
left intact. The estimated six transformation param-
eters were used to register the resliced images to the

https://surfer.nmr.mgh.harvard.edu
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
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Fig. 1. Network architecture with nine convolutional blocks and a
total of 137,418 learnable parameters.

MNI template space. We performed min-max scaling
on the registered images to standardize the intensity
range to the range between 0 and 1.

Methods

Our proposed network is a 3D CNN that takes
a whole brain 3D MRI image as input, analyzes it
through a series of convolutional blocks, and gener-
ates probabilities scores with DAT probability score
of 1 indicating that the given image likely belongs to
an individual with DAT.

Network architecture

As illustrated in Fig. 1, our network has a total
of nine convolutional blocks. Each of the convolu-
tional blocks is composed of a convolutional layer,
an instance normalization layer, and an activation
layer that utilizes leaky rectified linear units (ReLu).
The convolutional layers in all nine blocks have the
same 3 × 3 × 3 kernel size; they only differ in terms
of number of filters, length of strides, and rate of dila-
tions. The choice of number of filters can affect the
capacity of the network to learn complex spatial pat-
terns. It can also lead to overfitting when the number
of learnable parameters is too high in comparison

with the number of training images. Proper fine-
tuning of the number of filters requires a large amount
of graphical processing unit (GPU) resources, so we
opted to use a simple strategy to select the num-
ber of filters. We began with k number of filters for
the first layer, then we doubled the number of fil-
ters after every n layers, and we set a limit l to be
the maximum number of filters that can be used in
a layer to keep the network small and compact. In
this experiment, we used k = 8, n = 2, and l = 32. As
the number of filters increases, the memory foot-
print of higher-level layers increases. To manage the
memory usage, we used a stride of 2 in the first and
fourth blocks to progressively downsample the fea-
ture maps. Dilated convolution utilizes kernels with
holes inserted in them. These holes allow a convolu-
tional layer to regularly skip some of the input voxels
and capture patterns from a larger neighborhood.
Dilated convolutions were first used to exponentially
increase the receptive field of semantic segmentation
architectures [21]. A convolutional layer with a dila-
tion rate of 2 has a receptive field size of 5 which
is equivalent to the total receptive field size of two
consecutive convolutional layers without dilation. By
using dilated convolutions, we can expand the recep-
tive field without increasing the number of learnable
parameters and without losing spatial resolution. We
followed the idea originally introduced by [22] in the
Deep Lab V3 for semantic image segmentation task
to use consecutive dilated convolution blocks with
increasing dilation rate and same stride number in
the deeper layers to capture feature maps that cap-
ture larger perceptive field. We choose dilation rate
of 2,2,3 in the three consecutive blocks to balance
the number of reduced parameters and the range of
increased perceptive field.

In the training of CNN, normalization layers are
primarily used to improve the speed of convergence.
We used the instance normalization layer in our net-
work because it enables faster training, and it allows
us to train the network using a smaller batch size. The
instance normalization layer normalizes each chan-
nel of each feature map and it does this independently
for each training sample using the sample mean and
variance [23]. We used the leaky ReLu in our acti-
vation layer to avoid the dying ReLU problem where
a filter may never activate again over the course of
the training process due to instances of large gradi-
ents and destructive weight updates [24]. Rather than
clamping the negative values to zero, the leaky ReLU
has a small positive slope to allow negative values to
pass through. The final classification layers are the
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global average pooling layer and the softmax layer.
The global average pooling layer computes the aver-
age of the final 9 × 15 × 9 feature maps and outputs a
feature for each channel. The softmax layer is a 1 × 1
convolutional layer followed by softmax activation.

Network training

We employed several augmentation and sampling
strategies to avoid overfitting. We created slightly
perturbed images on-the-fly by applying random left-
right flip and translation of maximum 10 voxels in
each direction. To train our network to be more robust
against scanning conditions, we used all the base-
line and follow-up images for the subjects chosen for
training. Since not all subjects were scanned at regu-
lar intervals, subjects who were scanned more often
may exert more influence on the network. In order to
prevent this, we created our mini-batch by selecting
subjects, and for each subject, we randomly selected
1 timepoint to train on.

Given that our data is imbalanced and that the num-
ber of sNC subjects is higher than that of the sDAT
subjects, we optimized the weighted binary cross-
entropy loss. For the NC class, we used a class weight
of 0.43 which was computed by taking the ratio of
the number of sDAT subjects over the total number
of sNC and sDAT subjects. The DAT class weight of
0.57 was computed in a similar manner. We trained
our network using Adam optimizer and a learning
rate of 0.0005 for a maximum of 50 epochs [25]. We
monitored the performance of our network by using
all the baseline and follow-up images belonging to
the validation subjects.

Experiments

To evaluate our network, we performed 5-fold
cross-validation (CV) by splitting the training ADNI
data at the subject-level. This ensures that the training,
validation, and testing sets contain mutually exclusive
subjects, while splitting the data at the image level
will lead to data leakage and inflated performance
metrics [26]. We split the ADNI sNC and sDAT sub-
jects into five partitions. In each of the five folds,
three partitions were used for training, one partition
was used for validation, and the remaining partition
was used for testing. Every partition was used once
for testing and we reported the average performance
achieved on the test partitions.

We performed four additional independent tests to
comprehensively evaluate the generalizability of our

network. Since the 5-fold CV resulted in five sets
of network weights where each one was trained on
only a subset (60%) of the ADNI sNC and sDAT
subjects, we created an ensemble model that gener-
ates class probability scores by simply averaging the
scores generated by each of the five network weights.
The advantage of the ensemble model is that it makes
full use of the training data. We evaluated our ensem-
ble model on the unseen ADNI uNC, sMCI, pNC,
pMCI, and eDAT images to test whether our model
can generalize to subjects at earlier stages of the dis-
ease. Furthermore, we evaluated our model on the
AIBL data in an effort to determine whether our
network can generalize to images acquired at other
sites albeit using similar imaging protocols. We also
evaluated our model on the OASIS data which were
acquired at other sites using different imaging proto-
cols. A final independent test on the MIRIAD images
was conducted to assess the ability of our network in
generating reliable and consistent prediction labels
within a single day and over short intervals where
structural atrophy is not expected.

Network visualizations

We utilized guided-back-propagation and grad-
ient-weighted class activation mapping (Grad-CAM)
visualization techniques to verify if the DAT-
discriminative spatial patterns captured by our
network are consistent with the DAT-related struc-
tural atrophy patterns reported in the literature.
These techniques have been previously used to high-
light DAT-discriminative patterns captured using 3D
CNNs and FDG-PET images [27]. Given an input
image, guided-back-propagation computes and back-
propagates the gradients of an output class probability
node all the way back to the input layer [28].
Thus, the saliency image generated via guided-back-
propagation reflects voxels whose intensity changes
affect the output class probability. We computed the
saliency maps for the sNC and sDAT images, and we
smoothed the saliency maps by applying a Gaussian
filter with a sigma of 2.

Grad-CAM works in a similar fashion except that it
propagates the gradients of an output class probability
node only back to the convolutional layer preceding
the global average pooling, and it uses these gradients
to weigh each feature maps and outputs a class-
discriminative activation map [29]. Thus, the class
activation maps generated via Grad-CAM are very
small (9 × 15 × 9). The advantage of Grad-CAM is
that it circumvents the issue of back-propagating



52 E. Yee et al. / Construction of MRI-Based Alzheimer’s Disease Score Based on Efficient 3D Convolutional Neural Network

Table 2
Comparison of published NC versus DAT classification performances

Study NC/DAT subjects AUC Accuracy (%) Sensitivity (%) Specificity (%) Evaluation scheme

Beheshti et al., 2015 [30] 130/130 0.953 89.7 87.7 91.6 10-fold CV
Min et al., 2014 [31] 128/97 0.868 91.6 88.6 93.9 10-fold CV
Liu et al., 2015 [32] 128/97 0.958 92.5 92.9 88.3 10-fold CV
Wee et al., 2013 [33] 200/198 0.974 92.4 90.4 94.3 10-fold CV
Cheng and Liu, 2017 [34] 100/93 0.910 85.5 83.9 90.0 10-fold CV
Cheng et al., 2017 [34] 229/199 0.923 87.2 86.4 85.9 10-fold CV
Lian et al., 2018 [13] 429/358 0.951 90.3 82.4 96.5 Single split
Liu et al., 2018 [35] 429/358 0.959 91.1 88.1 93.5 Single split
Wegmayr et al., 2018 [36] –/– – 86.0 – – Single split
Wen et al., 2019 [37] 100/100 – 89.0 – – Held-out
Our method 423/330 0.945 88.1 88.3 88.1 5-fold CV

gradients which may become discontinuous due to
layers of non-linear activations. We computed the
class activation maps for the sNC and sDAT images,
and we re-sampled the class activation maps using
spline interpolation for the purpose of overlaying it
on the MRI images.

RESULTS

Cross-validation performance

The classification accuracy, specificity, sensitivity
and area under the receiver operating curve (AUC)
across all five folds are listed in Table 2. The per-
formance metrics were computed using a threshold
of 0.5 such that images assigned with DAT probabil-
ity score greater than 0.5 were labelled as DAT. On
average, the ADNI sNC test images have low DAT
probability scores with the scores clustering around a
mean value of 0.19. The ADNI sDAT test images have
high DAT probability scores that clustered around a
mean value of 0.83.

Independent test performances

In Table 3, we present the classification perfor-
mances achieved via independent testing. For the
ADNI nonextreme subgroups, we achieved an over-
all sensitivity of 75.9% on detecting DAT in subjects
at the earliest stages of the disease. The overall sen-
sitivity breaks down to a high sensitivity of 89.1%
achieved on the eDAT images, moderate sensitivi-
ties of 71.7%, 70.1%, and 68.5% achieved on the
pMCI uNC and sMCI images respectively, and a low
sensitivity of 29.7% achieved on the pNC images.
The performances on the AIBL data are similar to
that achieved on the ADNI data. The accuracy is
high (>90%) for sNC and sDAT and also for subjects

Table 3
Accuracy on independent test images in terms of overall balanced
accuracy, specificity, and sensitivity measured separately for each

dataset. The sensitivity is further break down by subgroups

Subgroup ADNI AIBL OASIS MIRIAD

sNC 90.2% 95.6% 94.7%
uNC 70.1% 84.6% 77.1%
sMCI 68.5% 60.0% 51.6%
pNC 29.7% 77.8% 49.2%
pMCI 71.7% 70.4% 70.9%
eDAT 89.1% 93.5% 89.3%
sDAT 91.2% 88.1% 96.8%
Overall balanced

accuracy
72.3% 86.8% 80.7% 95.7%

Overall specificity 68.7% 85.9% 89.9% 94.7%
Overall sensitivity 75.9% 87.6% 71.4% 96.8%

post-conversion to DAT (eDAT), and moderate sen-
sitivity for other groups (70.85%).

On the OASIS data, the model showed very high
accuracy (95.6%) on the sNC images, high accuracy
on the eDAT and sDAT images (89.3% and 88.1%,
respectively), and low to moderate accuracy on other
images along the continuum. For the MIRIAD data,
we investigated both cross-sectional and longitudinal
performances. The model achieved very high (>94%)
accuracy on cross-sectional sNC and sDAT images.
To explore whether the predictions are stable within
short periods of time where structural atrophy is not
expected, we computed accuracy on the subject level.
In this setting, a subject is correctly classified only if
all their scans are assigned the correct labels. The
model consistently classified 44 out of 46 sDAT sub-
jects as DAT and 21 out of 23 sNC subjects as NC.
In both cases, the model consistently mis-classified
1 subject as either DAT or NC, and the other subject
was mis-classified at certain timepoints and correctly
classified at other timepoints.

Considering the four independent tests as a whole,
the network achieved an overall accuracy, specificity,
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Fig. 2. Violin plots showing the distribution of the DAT probability
scores assigned to the independent test images. The white circles
indicate the mean probability scores.

and sensitivity of 79.5%, 79.5%, and 79.7%, respec-
tively, on the complete set of 7,902 independent test
images. In Fig. 2, we show the distribution of the
DAT probability scores assigned to the independent
test images. The mean probability scores follow the
data stratification scheme in an ascending order with
the sNC subgroup having the lowest mean probability
score (0.18) and the sDAT subgroup having the high-
est mean probability score (0.85). The sNC, eDAT,
and sDAT subgroups, which are near the extreme
ends of the spectrum, all have a single large cluster of
either low or high probability scores. The other sub-
groups have probability scores that are more widely
distributed. On the task of early diagnosis of DAT, we
take a deeper look at the classification performance
on the pMCI images. As shown in Fig. 3, we break
down the probability score distributions and accuracy
performances by the year to conversion which is the
number of years elapsed before a clinical diagnosis
was changed to DAT. Within 3 years to conversion,
the probability scores are relatively high and the accu-
racy is above 70%. For images acquired 5 years prior
to conversion, the probability scores are low and the
accuracy is lower than that obtainable by chance.

DISCUSSION

In this paper, we developed a lightweight 3D CNN
for the quantification of a 3D subject MRI image into
a probability of dementia score, with scores closer to
1 indicating higher probability of DAT. The scores
thresholded at 0.5 then provided a binary classifica-
tion. Our 3D CNN network features the use of dilated

Fig. 3. Violin plots showing the distribution of the DAT probability
scores assigned to the pMCI images and sorted by the year to
conversion. The white circles indicate the mean probability scores.

Table 4
Comparison of balanced accuracy achieved on independent
datasets (e.g., AIBL and OASIS) for sNC versus sDAT and sMCI

versus pMCI classification tasks

Study sNC versus sMCI versus
sDAT pMCI

balanced balanced
accuracy accuracy

AIBL OASIS ADNI AIBL OASIS

Wen et al., 2019 [37] –
3D subject-level CNN

86.0 68.0 73.0 50.0 –

Wen et al., 2019 [37] –
3D ROI-based CNN

84.0 69.0 74.0 60.0 –

Wen et al., 2019 [37] –
SVM

88.0 70.0 75.0 60.0 –

Cuingnet et al., 2011 [7] – – 65.5 – –
Chupin et al., 2009 [38] – – 62.5 – –
Cho et al., 2012 [39] – – 69.5 – –
Our method 90.7 91.9 70.1 65.2 61.3

convolutions. Dilated convolution uses kernels with
holes inserted in them to increase the receptive field
size. This allows the network to learn DAT-related
spatial patterns through a small number of layers and
filters. Our sampling strategy allows the network to
quickly learn from all training subjects and prevents
subjects with multiple scans from heavily influencing
the network. During each training epoch, we ran-
domly selected one scan from every subject. The
combination of compact architecture and subject-
level sampling enables faster training and prevents
overfitting.

As indicated in Table 2, our 5-fold cross-validated
performance is in line with previously reported
results. It is difficult to perform more detailed com-
parison with the classification performances from
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Fig. 4. Saliency maps generated via guided-backpropagation and class activation maps generated via Grad-CAM for randomly chosen sNC
images. The saliency maps show that voxels with a large impact on the NC probability scores are mostly located in the hippocampus. The
regions considered most important for predicting the NC class as highlighted by the class activation maps include the thalamus, hippocampus,
and ventricles.

other studies due to differences in the cross-validation
strategies, data split, and number of images used.
Many studies have reported high accuracy in differ-
entiating DAT from NC, but very few studies have
validated their methods on independent datasets. Fur-
thermore, the accuracies in the more challenging and
clinically relevant tasks of differentiating DAT from
MCI and pMCI from sMCI are often not reported or
are much lower [8]. We emphasize the importance of
comprehensive independent testing in providing an
unbiased estimate of generalizability and facilitating
comparisons with other methods [40, 41]. In Table 4,
we compare our method to the very few methods that
have been validated on independent datasets. Our
method delivers relatively high balanced accuracy

across multiple independent datasets for both early
(sMCI versus pMCI) and late (NC versus DAT) detec-
tion of DAT.

To comprehensively evaluate the generalizability
of our network, we performed four independent
tests. The first test is performed using images from
other ADNI subgroups (uNC, sMCI, pNC, pMCI,
and eDAT) whose subjects were never seen by the
network during training. These subgroups represent
individuals at various stages of the disease and are
therefore more representative of the images observed
in a real-world clinical setting. It is crucial to per-
form an independent test on these images to better
examine the potential for future clinical utility of the
proposed method. On the ADNI data, our network
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Fig. 5. Saliency maps generated via guided-backpropagation and class activation maps generated via Grad-CAM for randomly chosen sDAT
images. The saliency maps show that voxels with a large impact on the DAT probability scores are mostly located in the hippocampus.
The regions considered most important for predicting the DAT class as highlighted by the class activation maps include the thalamus,
hippocampus, and ventricles.

delivers classification accuracy of around 70% in
classifying the uNC, sMCI, and pMCI images. The
second test is performed on the AIBL data, and
the results are comparable with the results achieved
on the ADNI data. This indicates that our method
can generalize to images acquired at different sites
and with different scanners. Similar performances
are achieved on the OASIS data, further indicating
that our method can generalize to images acquired
with different imaging protocols. The last indepen-
dent test is evaluated on the MIRIAD data where
a small number of subjects were scanned multiple
times over a short period of time. The performance
on the MIRIAD data indicates that our method can
generate reliable and consistent predictions over time.

Our specificity of 94.7% and sensitivity of 96.8% are
slightly higher than the 93% specificity and 95% sen-
sitivity achieved using other methods via independent
testing [35, 42].

To understand how our network makes predictions,
we visualize the saliency maps generated via guided-
backpropagation and the class activation maps gen-
erated via Grad-CAM. The saliency maps reflect
voxels whose intensity changes lead to changes in the
NC probability scores, and the class activation maps
reflect regions considered most important for predict-
ing the NC class. While these saliency maps and class
activation maps may contain artifacts, they allow us
to see if the network is focusing on relevant brain
regions. In Fig. 4, we show the saliency maps and
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class activation maps for some randomly chosen sNC
images. Voxels with a large impact on the NC proba-
bility scores are mostly located in the hippocampus.
To predict the NC class, the network focuses on the
spatial and intensity patterns in the regions known
to be implicated in DAT such as the thalamus, hip-
pocampus and ventricles. Similar regions are also
localized in Fig. 4 for some randomly chosen sDAT
images. Consistent with the literature, the visualiza-
tions show that the network localized brain regions
that are known to exhibit structural atrophy in DAT
subjects [43].

In this study, we implemented the multi-grid me-
thod introduced in [22] to include consecutive dilated
convolutions with increasing dilate rate and constant
stride size in the deeper layers, to achieve the same
effect of capturing larger perceptive field as nor-
mal convolutional layer with reduced parameters to
keep the network light-weight and efficient. Poten-
tial further improvement of our implementation of
dilated convolutional layer can be made by incorpo-
rating the Atrous Spatial Pyramid Pooling (ASPP)
layer introduced in the original DeepLabV3 model
by [22] to apply the dilated convolution at different
scale in parallel, which can then be also combined
with image-level features. On the other hand, these
improvements potentially require increased number
of network parameter, thus may prevent the model to
be light-weighted.

Conclusions

Taking into consideration the computational
resources required to train neural networks, we devel-
oped a lightweight 3D CNN for the classification
of DAT using MRI images. Our network is orders
of magnitude smaller than existing networks in
terms of number of filters. This compact architecture
uses dilated convolutions to increase the receptive
field more efficiently and to enable faster training.
Importantly, we performed extensive evaluation of
our network via four independent tests to facili-
tate comparison with future studies and to examine
whether the classification performance can general-
ize to images displaying varying levels of atrophy
and images acquired using different hardware and
imaging protocols. Our network delivers reasonable
probability scores for each stratified subgroup and
showed competitive accuracy in multiple classifica-
tion tasks including the classification of sMCI, pMCI,
and sDAT images.
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